

CanSat 2022-2023
Workbook for the new Python kit

Student workbook

CanSat 2022 Workbook

Table of content
Introduction ... 1

The CanSat Kit.. 2

Meet Raspberry Pi Pico .. 6

Connect your Raspberry Pi Pico to your computer .. 8

Install Thonny on your; computer .. 9

Install MicroPython on your Pico ... 11

Run your first MicroPython code on your Pico ... 13

General Purpose Input/Output (GPIO) ... 14

Write your first microPython file to control the onboard LED.. 15

Software development & wiring test .. 18

Meet a breadboard .. 18

Blink a LED on the breadboard .. 19

Test your jumpers .. 20

Measuring temperature and pressure .. 21

Lab 1: GPIO Communication and Soldering .. 23

Lab 2: Reading from Analogue and Digital Sensors (ADC and I2C) 29

Lab 3: SPI Interface and Radio Communication .. 37

Recording the data from the space………………………………………………………………..42

Introduction
This document is to the point without being a complete technical guide. References to full

technical guides are given where necessary.

The difficulty of the labs is progressive, starting with wiring and programming steps without

any soldering.

The assembly of components and their soldering only comes once the elements have been

validated on the breadboard.

The following labs have been designed to introduce you to some of the electronics and

programming skills that will be required to undertake the CanSat competition.

The CanSat Kit
The kit comprises of off-the-shelf hardware that is cheap and easy to buy online. This allows

teams to easily replace broken components and to also find support and ideas from the

wealth of online teaching tutorials and technical resources related to Raspberry Pi Pico and

MicroPython. The kit we use in the labs contains the following items:

2x Raspberry Pi Pico

https://www.adafruit.com/product/5525

2x radio transceivers RFM69HCW

https://www.adafruit.com/product/3071

1x BMP280 Barometric Pressure/Temperature/Altitude Sensor

https://www.adafruit.com/product/2651

https://www.adafruit.com/product/5525
https://www.adafruit.com/product/3071
https://www.adafruit.com/product/2651

1x TMP36 sensor

Alternative to the BMP280, the TMP36 is a basic analogue temperature sensor

that outputs a voltage based on the ambient temperature around the sensor.

https://learn.adafruit.com/tmp36-temperature-sensor

1x breadboard for prototyping circuits

A breadboard is a construction base used to build semi-permanent prototypes of electronic
circuits without any soldering.

1x USB cable

Cable used to plug your Raspberry Pico to a computer to program it or to charge the Lipo

lithium battery.

https://learn.adafruit.com/tmp36-temperature-sensor

1x lithium battery

3.7V 1300mAh battery to power the Raspberry Pico inside your CanSat, without the USB

cable.

https://cdn-shop.adafruit.com/datasheets/Li-poly+603562-1300mAh.pdf

1x 5 volts converter and lithium battery charger

Board that converts the lithium battery power to a 5 volts power source suitable for the

Raspberry Pico. It can recharge the lithium battery when the kit is powered via USB.

https://www.adafruit.com/product/1944

https://cdn-shop.adafruit.com/datasheets/Li-poly+603562-1300mAh.pdf
https://www.adafruit.com/product/1944

1x Cansat base board for Pico

After having tested the wiring of your components and their related software on the

breadboard, you can solder the Raspberry Pico, the 5V converter board and the radio

transmitter to this board. Its diameter fits within the maximal CanSat diameter. The BMP280

board can be plugged in using the provided JST cable.

https://shop.mchobby.be/fr/pico-rp2040/2275-carte-de-base-cansat-pour-pico-

3232100022751.html

1x Cansat extension board

This CanSat extension board is useful to add components needed for the secondary mission

like a GPS or other sensors.

https://shop.mchobby.be/fr/pico-rp2040/2272-carte-de-prototypage-cansat-pour-pico-

3232100022720.html

ESERO provides you with a complete kit for free but the various components can be bought

separately at McHobby

https://shop.mchobby.be/fr/pico-rp2040/2275-carte-de-base-cansat-pour-pico-3232100022751.html
https://shop.mchobby.be/fr/pico-rp2040/2275-carte-de-base-cansat-pour-pico-3232100022751.html
https://shop.mchobby.be/fr/pico-rp2040/2272-carte-de-prototypage-cansat-pour-pico-3232100022720.html
https://shop.mchobby.be/fr/pico-rp2040/2272-carte-de-prototypage-cansat-pour-pico-3232100022720.html
https://shop.mchobby.be/fr/pico-rp2040/2271-kit-cansat-avec-raspberry-pi-pico-micropython-3232100022713.html

Meet Raspberry Pi Pico

A Raspberry Pi Pico is a low-cost microcontroller device. Microcontrollers are tiny

computers, but they only have a small file storage (unlike a hard drive on a typical computer)

and lack peripheral devices that you can plug in (for example, keyboards or monitors).

A Raspberry Pi Pico has

• A 133MHz processor with 264 kilobytes of RAM memory

• 2 megabytes of file storage

• A BOOTSEL button used to install MycroPython on the Pico

• A green LED

• A USB connector to power the Pico and transfer software or data.

• 2 x 20 pins used to power the Pico as well as control and receive input from a variety of

electronic devices.

Each of the 40 pins has its own function.

If you need to know the pin numbers for a Raspberry Pi Pico, you can refer to the following
diagram or this interactive website

While working with the Pico, you will only need to work with:

• Red and black pins = pins related to power and ground connection

• Purple pins = pins related to the UART communication

• Rose pins = pins related to the SPI communication protocol

• Blue pins = pins related to the I2C communication protocol

There are several ways to power your Pico, either using

• the micro-USB cable (in the development phase)

• the provided 5 volts converter and lithium battery (when development is done)

https://pico.pinout.xyz/
https://www.circuitbasics.com/basics-uart-communication/
https://www.circuitbasics.com/basics-of-the-spi-communication-protocol/
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/

Connect your Raspberry Pi Pico to your computer

In this section, you will connect a Raspberry Pi Pico to another computer and learn how to

program it using MicroPython.

Firmly plug your Raspberry Pi Pico on the provided breadboard like shown in the following

picture. Place it so that it is separated by the breadboard’s ravine in the middle.

Plug the provided micro-USB cable into the port on the left-hand side of the Pico.

Your Pico should appear like an USB storage on your file system

Install Thonny on your computer

Python is a general purpose language used in a large variety of applications (data sciences,

Artificial Intelligence, statistics, …) while MicroPython is specifically designed for

microcontrollers like the Raspberry Pi Pico used in our project.

To edit, run and debug our code in MicroPython language we will install an Integrated

Development Environment (IDE) called Thonny, available at https://thonny.org

Open Thonny from your application launcher. It should look something like this:

https://thonny.org/

You can use Thonny to write standard Python code. Type the following in the top window,

and then click the Run button.

print('Hello World!')

The result is shown in the “Shell” window

Install MicroPython on your Pico

Your new Raspberry Pi Pico needs MicroPython to run your software.

Start by unplugging the micro-USB cable from your computer but leave it connected to your
Pico.

Press the BOOTSEL button and hold it while you connect the other end of the micro-USB
cable to your computer.

In the bottom right-hand corner of the Thonny window, you will see the version of Python
that you are currently using.

Left-click on the Python version and choose ‘Install MicroPython…’

A dialog box will pop up to install the MicroPython firmware on your Pico.
Select the correct MycroPython variant and click on the Install button.

Wait for the installation to complete and click on the Close button.

You don’t need to update the firmware every time you use your Pico.

Next time, you can just plug it into your computer without pressing the BOOTSEL button.

Run your first MicroPython code on your Pico

Make sure that your Raspberry Pi Pico is still connected to your computer.

Select the MicroPython (Raspberry Pi Pico) interpreter on the bottom right.

Look at the Shell panel at the bottom of the Thonny editor.

You should see something like this:

Thonny is now able to communicate with your Pico using the REPL (read–eval–print loop),

which allows you to type Python code into the Shell and directly see the result.

MicroPython adds hardware-specific modules, such as machine, that you can use to

program your Raspberry Pi Pico.

Let’s create a machine.Pin object to play with the onboard LED, which can be accessed

using GPIO pin 25.

If you set the value of the LED to 1, the onboard LED turns on.

Enter the following code, make sure you tap Enter after each line.

from machine import Pin
led = Pin(25, Pin.OUT)
led.value(1)

After pressing the green “Run” button , you should see the onboard LED light up.

Change the code and set the LED value to 0 to turn the LED off.

led.value(0)

Turn the LED on and off as many times as you like.

Tip: You can use the up arrow on the keyboard to quickly access previous lines.

We said the onboard LEP is connected to GPIO pin 25, but what is GPIO?

General Purpose Input/Output (GPIO)

GPIO pins on the Raspberry Pi allow external voltages to be read from the software and they

also allow external voltages to be set from software. These are digital pins, so the inputs are

interpreted at either a logical "False" or logical "True" depending on the voltage of the signal.

For our 3.3V Raspberry Pi, any voltage under 2.5V is interpreted as "False" and conversely

any voltage over 2.5V is interpreted as true (up to 3.3V). This is similar for output signals. A

"True" output will set the pin's voltage to 3.3V and the "False" output will set the pin's voltage

to 0V.

GPIO pins can be used as either input or output ports and this set by software.

The Pi Pico has 28 GPIO ports as seen in the green boxes in the following diagram. Many

pins are multi-purpose and can also be used for other interfaces (UART, SPI, I2C), these are

represented by the multi-coloured boxes to the side of the green boxes in the diagram. The

following link contains the pinout: https://datasheets.raspberrypi.org/pico/Pico-R3-A4-

Pinout.pdf

https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.pdf
https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.pdf

https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.pdf

Typical GPIO CanSat Uses:

Inputs: On/Off based sensors, switches, buttons, deployment sensors

Outputs: Status LEDs, basic servos (PWM is better), turning sensors on, resetting sensors

connected by other signals

If you want to write a longer program, then it is best to save it in a file. You will do this in the

next section.

Write your first microPython file to control the onboard LED

The Shell is useful to try out quick commands. However, it is better to put longer programs in

a file.

Thonny can save and run MicroPython programs directly on your Raspberry Pi Pico.

In this step, you will create a MicroPython program to blink the onboard LED on and off in a

loop, using GPIO pins

Go back to Thonny and click in the main editor pane of.

Enter the following code to toggle the LED.

import necessary pre-existing libraries
from machine import Pin
Declare a variable named “led”, link it to pin number 25 and define it as output
led = Pin(25, Pin.OUT)
Change the led state from led.value(0) to led.value(1) and vice versa
led.toggle()

The complete “Pin” library documentation can be found in the official MicroPython

documentation

Click the Save button to save your code and the following screen will show up:

Choose “Raspberry Pi Pico” and name the file “blink.py”

Tip: You need to enter the .py file extension so that Thonny recognises the file as a Python

file. Thonny can save your program to your Raspberry Pi Pico and run it.

You should see the onboard LED switch between on and off each time you click the Run

button.

But what if you want to see the LED blinking without having to click the Run button over and

over ?

To achieve this we will use a “while” loop and the “sleep” function

Be careful to indent the code with 4 spaces within the while loop to let MicroPython know

that these lines are part of the while loop.

Update your code so it looks like this:

import necessary pre-existing libraries
from machine import Pin
From time import sleep
Declare a variable named “led”, link it to pin number 25 and define it as output
led = Pin(25, Pin.OUT)
Change the PIN state to HIGH if it was LOW and vice versa, therefore cutting or
supplying the power to the LED

Be careful to indent the code with 4 spaces within the while loop to let
MicroPython know which lines are part of the while loop.
while True:
 # Change the led state from led.value(0) to led.value(1) and vice versa
 led.toggle()
 # Halt the program execution for half a second
 sleep(0.5)

https://docs.micropython.org/en/latest/library/machine.Pin.html
https://docs.micropython.org/en/latest/library/machine.Pin.html
https://docs.python.org/3/reference/compound_stmts.html#while
https://docs.micropython.org/en/latest/library/time.html#time.sleep

You can also use the Timer module (first line below) to set a timer that runs a function at

regular intervals. Update your code so it looks like this:

import necessary pre-existing libraries
from machine import Pin, Timer

Declare a variable named “led”, link it to pin number 25 and define it as output
led = Pin(25, Pin.OUT)
Declare a timer variable to deal with timing of periods and events
timer = Timer()

Declare a function named “blink” that toggle the LED state
def blink(timer):
 # # Change the led state from led.value(0) to led.value(1) and vice versa
 led.toggle()

Configure the timer to call the pre-defined blink function every 2.5 seconds
timer.init(freq=2.5, mode=Timer.PERIODIC, callback=blink)

The complete “Timer” library documentation can be found in the official MicroPython

documentation

Click Run and your program will blink the LED on and off until you click the Stop button.

Tip: If you unplug/re-plug your Pico, you will have to press again the Run button to run the

program. But if you name your program “main.py” on your Pico it will run automatically when

the Pico powers up.

https://docs.micropython.org/en/latest/library/machine.Timer.html?highlight=timer#machine.Timer
https://docs.micropython.org/en/latest/library/machine.Timer.html?highlight=timer#machine.Timer

Software development & wiring test

Meet a breadboard

Whilst you are learning the basics of Pico and sensors it is best to use a solderless

breadboard, as any mistakes you make building your circuit can be easily changed.

A breadboard is a simple tool that can be used to wire electrical components together.

Pins of electrical components can be placed into the terminals on the board. Centrally, rows

are horizontally connected. This means for example, that the two pins of a resistor should be

placed in different rows, otherwise it will form a closed circuit with itself.

It is very important to make a sketch of your circuit before connecting and powering the

circuit, because you will risk breaking the components. The outer columns of the board are

connected in columns, rather than rows. Typically, these are used to provide ground and

voltage connections.

Blink a LED on the breadboard

You will know learn how to control an external LED.

Use a 220 ohms resistor, an LED, some female jumpers and a few headers to connect up

your Raspberry Pi Pico on your breadboard as shown in the image below.

Note how the LED is connected on GPIO 15 on one side (the last one on the bottom left as

you can see in the Pico pinout diagram) and to the Pico’s ground pin on the other side.

In Thonny, reuse the code from the previous section, but instead of GPIO 25, use GPIO 15

….
Declare a variable named “led”, link it to pin number 15 and define it as output
led = Pin(15, Pin.OUT)
….

https://wiki.mchobby.be/index.php?title=Fichier:FILS-BB-FFASSOR-v2.png
https://pico.pinout.xyz/

In this example, we chose to connect the LED to GPIO 15 but if you can use another GPIO if

you want.

Test your jumpers

Your kit contains several male and female jumpers to test your components wirings on your

breadboard before soldering your components on the CanSat base board.

Sometimes, because of factory issues, it happens that some if these jumpers are broken.

To save you some headaches and time, we strongly advise you to test all your jumpers with

the previous “blink an external LED” exercise by replacing the 2 jumpers with the other

jumpers provided with the kit.

Measuring temperature and pressure

Micro Python provides some built in functionality for managing the Pi Pico, however this can

be extended through the use of third-party libraries. These are libraries produced by

manufacturers, suppliers and the Micro Python community for the purpose of using extra

devices with the Pi Pico. These libraries reduce the complexity of using external devices by

providing high-level functions to interact with the devices they support

The kit is made of several sensors for which we will use specific Micro Python libraries we

can find on the WEB.

We will install the libraries which have been recommended and tested by the supplier.

Install BMP280, RFM69 Boards libraries

BMP280

This chip measures the atmospheric pressure as well as the temperature.

Click on this link to access and download the BMP280 – BME280 library :

https://github.com/mchobby/esp8266-upy/blob/master/bme280-bmp280/bme280.py

then right click the RAW button

choose enregistrer la cible du lien sous

keep the proposed file name (bmp280.py) and change the destination

directory if you want (default is download)

RFM69HCW

This chip is the radio receiver/sender installed on the base station and in the CatSat station

to transmit the data from the CatSat Station to the Base Sation:

Click on this link to access and download the RFM69HCW library :

https://github.com/mchobby/esp8266-upy/blob/master/bme280-bmp280/bme280.py

 https://github.com/mchobby/esp8266-upy/blob/master/rfm69/lib/rfm69.py

… proceed in the same way as for the previous chip

Transfer the bme280.py and rfm69.py on the Pi pico

Both programs have to be transferred from the downloads directory on your PC (Windows,

Raspi or Mac), to the Raspberry Pi Pico /lib directory as they will be used by the complete

program for the CatSat mission

This is quite simple to do this:

 Click on the view button in the menu bar

 Choose the Files option

On the left side the Files view shows the directory on the PC and of the Pi pico (if the Pi pico

is connected, you see the prompt >>> (if not there is no connected Pi pico)

In the file view, double click on the lib to enter this directory on the PI pico

Right click on the bme280.py in the downloads directory

1. Choose upload to /lib

Proceed in the same way to transfer the rfm69.py file from the PC/downloads direstory to the
Pi p

https://github.com/mchobby/esp8266-upy/blob/master/rfm69/lib/rfm69.py

Lab 1: GPIO Communication and Soldering

The first lab will cover running a basic Python3 program that tests that MicroPython and the

Pi Pico are up and running correctly. It also contains some soldering to build the boards in

your kit. Soldered connections are one of the most reliable ways of connecting parts of the

CanSat electrical design together.

Exercise 1.1: Soldering the CanSat Kits

The RFM96W, BMP280 and Raspberry Pi Pico boards will need header pins soldering to

them so that they can be used with the breadboard and jumper wires.

For the RFM96W and BMP280 the boards can be soldered such that the long side of the

header pins are facing the bottom of the boards. The Pi Pico on the other hand has its pin

names on the back and so it may be preferable to solder these pins on backwards if you

intend to use the Pi with a breadboard.

As the Pi pins are in parallel, it is recommended to plug them into a breadboard first to

ensure they are aligned.

https://learn.adafruit.com/adafruit-guide-excellent-soldering/common-problems

Exercise 1.2: Controlling the LED from the view Shell Using GPIO

The Pi Pico has a built in LED on GP25:

As this is a GPIO pin, we can control it from the MicroPython software. To test this will we

use the Read-Evaluate-Print-Loop (REPL) functionality of Thonny thanks to the Shell view

that allows us to write basic code without saving it to a file. The code has to be entered one

line at a time, which can be tedious but is useful for testing.

1. Connect the Raspberry Pi Pico to the laptop.

2. Click the icon

The following message should appear:

MicroPython v1.19.1 on 2022-06-18; Raspberry Pi Pico with

RP2040

Type "help()" for more information.

>>>

1.

We can write code directly into this interface. To test the LED we need to use the

GPIO functions. To do this we need to import a MicroPython library.

 >>> from machine import Pin

You have now a new line with the prompt >>> indicating that the Pin functions of the

machine library can now be used

3.

Now we can set the LED as a GPIO pin with the following code:

 >>> led = Pin(25,Pin.OUT)

1.

We can then control the LED from Python. The following line should turn on the LED:

>>> led.value(1)

1.

write a command to switch the LED off !!

Exercise 1.3: Controlling the LED from Software Using GPIO

The MicroPython REPL (Shell View) is handy for testing small amounts of code, but for the

CanSat application the code will need to be written into a file.

If this file is saved to the Pi Pico under the name main.py it will be automatically run when

you’re the Pi Pico is powered up. Any other file name will be run at startup of the Pi Pico

Note the indentation of this code. This is important in Python and shows what code

should be executed as part of this loop.

1. Run the code. You will see some errors regarding the sleep() function. The sleep

function is part of the “time” library. Therefore, add some code to import the time

library in the same way as the machine library were added.

2. The code should now run.

3. Finally, we can simplify the above code by reading the state of the LED, inverting it

(i.e. True -> False, False -> True) before writing to it back to the LED. Replace your

while loop with the following code:

4. This while loop with the 1 second pause will be used later on in the workshop for

reading the sensors once every second and sending the data over the radio.

Exercise 1.4: Printing Messages to the Console

MicroPython allows the Pi to output messages from the code, that can describe events and

display variable values. This is very useful during the development of the CanSat code.

There are many ways this can be achieved in MicroPython and we will show one method.

The messages are sent using a UART interface that is forwarded over the USB cable

coming in the computer. Thonny will display these messages in the Shell View. You could

also use a terminal emulator program (PuTTY, Tera Term for Windows) to connect to the

serial port to display the messages. You can also use the UART interface to connect to other

devices such as GPS receivers and GSM modems.

1. The print() function allows us to send messages over the UART. Add the following line

before your while loop from the previous exercise:

2. Run the code by saving the file and check that you can see the message in the serial

window within the Shel view.

3. Information messages like this are useful for tracking the progress of the CanSat

program and displaying error messages. However, they can also be used to print out

variable values.

Add the following code after the Hello message:

4. Run the code. Python automatically converts the value of test_value into a message

string.

5. A more useful case is to combine the text message and the value of a variable. Add

and run the following code:

 The results are different. In the first example the printed value is the full value of

the variable. In the second example we fixed the displayed number of the decimals at

2

The code after the ‘%’, within the double quote is a placeholder for a variable. The ‘I’

indicates the value is an integer, an f indicates it is a floating point variable. The ":.2" in the

second example denotes that we want the displayed value with two decimals after the

decimal point. Python displays the value of the variable which name is preceded by a ‘%’

after the second double quote.

6.

Universal Asynchronous Receiver-Transmitter (UART)

Despite the name UART is a relatively simple communication interface. It operates in

the same fashion as the GPIO with true/false values represented as 0V and 5V but

pulses are sent across the wire instead of a steady voltage pulses. This allows a

numerical value to be converted to a series of pulses and sent over a single wire:

The Raspberry Pi Pico has two UARTs. These can be connected to many pairs of GP pins

as shown in purple in the Pi Zero pinout: TX is the transmit (i.e. data sent out of the Pi) and

RX as the receive (i.e. data sent to the Pi).

Typical UART CanSat Uses:

Sending debug and development messages to a PC, communicating with GPS sensors,

communicating with external WiFi and GPRS (3G) modems.

Lab 2: Reading from Analogue and Digital Sensors (ADC and I2C)

This lab covers communication with the temperature and pressure sensor required to

achieve the CanSat primary mission, using a more complex communication interface: I2C.

I2C Prototcol (Inter-Intergrated Circuit)

I2C allows multiple devices (up to 1008) to be connected to the same I2C interface with just

a pair of wires. It also allows bi-directional communication over these two wires and so is

ideal for communicating with many sensors. An example wiring with three devices would be

as follows:

The software required to communicate with I2C devices can be complex, however most

devices will have a software library provided that will give you functions that make the device

easy to use. For example in this lab we use the provided BMP280 library to hide away the

low-level I2C code.

Typical I2C CanSat Uses:

"Smarter" sensors (e.g. the BMP280), Accelerometers, Analog-Digital Converters, Digital-

Analog Converters, LCD Screens, Battery Controllers

Exercise 2.1: Connecting the BMP280 Pressure/Temperature Sensor using I2C

Before we can read data from the sensor we need to connect it to the Pi. I2C requires us to

connect two data cables and the BMP280 sensor also requires VCC (power) and GND

(ground) connection, thus four cables in total.

1. Connect the 2-6V input pin on the BMP280 to pin 3V3 on the Pi (3.3 volts 300 mA

output) and connect the GND pin on the BMP280 to a GND pin on the Pi.

2. The I2C SCL and SDA pins need connecting to the Pi's I2C pins. The Pi Pico has two

physical I2C interfaces that can be configured to use several pairs of pins to fit a PCB

design or needs for other interfaces.

For now, we will use IC2 0 on pins GP8 and GP9. These are shown in blue in the

diagram below:

And so connect the SDA and SCL BMP280 pins to pins GP8 and GP9 on the Pi.

Alternative way to connect the BMP280 sensor and the Pi Pico.

The kit you have received offer the possibility to connect the sensor and the Pi Pico

through a cable

Exercise 2.2: Reading the Temperature and Pressure

Now that the BMP280 is connected and set up we can read data from it.

1. Create a new file

2. Save this file under the name you want, terminated by .py

3. We need to use several pre-built libraries to access the BMP280 I2C:

• machine : provides access to the Raspberry Pi Pico pins

 (I2C, SPI, UART)

• bmp280: the BMP280 sensor library provided by the manufacturer

4. Before we read from the sensor, we need set up the I2C interface by telling python

which Raspberry Pi pins we would like to use for the interface. We also need to

import the library of the bmp280 board.

 from machine import I2C

from bmp280 import *

5. We import the time library as usual to make a pause between two successive
readings of the sensor

import time

6. We now need to create an object that represents the BMP280 sensor using the

Adafruit library. We also need to tell the library which I2C interface we wish to use

and the I2C address of the sensor, for the sensor in the kits this is I2C 0:

 i2c = I2C(0) # sda=GP8, scl=GP9 @ 400 KHz (default)

 bmp = BME280(i2c=i2c, address=BMP280_I2CADDR)

You can search on the WEB if you want to have more information about

I2C bus on the official MicroPython I2C documentation

7. We can now add a function to read and print one of the values from the BMP280

sensor (temp, atm pressure, humidity)

the function bmp.raw_values return the 3 values in a row. If we want to display a

specific one it’s necessary to create a list which will first store the data returned by

the function bmp.raw_values. We select the in raw the value we need

The function definition to read the temperature (first value in the raw) would be

Write a function read_pressure() that can read the pressure from the sensor (it will

look very similar to the read_tem() function), but with one decimal (see example

above)

8. You have now written your own BMP280 library. Return to the code.py file.

9. Save the code and correct any errors. If there is an error concerning the I2C then

check your wiring. Your CanSat should print out the temperature and pressure

readings every 1s.

Add the format string, run the program and observe the difference in output style.

Exercise 2.3 (optional): Interfacing an Analogue Sensor via the ADC

I2C is a digital interface, only two voltage levels are supported (0V and 3.3V) which limits its

use as a sensor input when interfacing directly to any analogue electronic sensors you may

have or developed or procured. The Raspberry Pi Pico contains three Analogue-to-Digital

https://docs.micropython.org/en/latest/library/machine.I2C.html

Convertors (ADC) that can translate an analogue voltage into a number that the Python

program can use. These are located on GP26, GP27 and GP28 as below:

In their default configuration, the Pi ADCs will sample the voltage on the ADC input pin, this

must be within the range of 0V to 3.3V. Once sampled, it converts the voltage to a number

between 0 and 65,535 with a value of 0 representing 0V and a value of 65,535 representing

3.3V.

The kits include a TMP36 analogue temperature sensor. This sensor outputs a voltage

dependant on the ambient temperature the device measures. The output voltage to

temperature relationship for a 3V input is as follows:

TMP36 Datasheet Rev H.

Therefore, by connecting the output of the TMP36 to the ADC of the Pi and performing some

transformation of the value read, we can measure the temperature using the TMP36.

1. Connect the TMP36 to the Pi as follows:

a. Pin 1: 3V3

b. Pin 2: ADC0 (GP26)

c. Pin 3: GND

(please note that if Pin 1 and Pin 3 are reversed the TMP36 can get very hot

quite quickly, so double check before powering up the Pi)

The pins on the TMP36 have the following layout (viewed from the bottom of the

device):

Figure 0-1 Source: TMP36 Datasheet Rev H.

2. We can now write the python code to access the TMP36. Create and save a new file

called tmp36.py

3. In this new file, import the following required libraries:

4. Now setup the ADC associated with pin GP26 with the following line:

5. To read the sensor via the ADC will we create a function (in the same way as the

BMP280 was used). First, create the read_temp36() function.

6. We then need to read the ADC and convert the value to a voltage by scaling the read

value in the range of 0 mV to 3300 mV (0V to 3.3 V):

7. The voltage reading can then be converted to a temperature using the following

information from the data sheet:

TMP36 Datasheet Rev H.

As we are using the TMP36 our offset (500 mV) needs to be deducted from the

voltage read by the ADC and the whole result scaled by 100 (as we are working in V

whilst the datasheet is working in mV):

8. Return the calculated temperature:

9. Then call the read_temperature function and print the result. We have then the

resulting complete code

10. Run the code and compare the sensor readings between the TMP36 and the

BMP280.

there are several ways to measure the temperature with electrical, actif or

passif, sensors. The choice of the sensor depends on the precision as well the

range of the temperature wanted, the reactivity needed, the consumption of

the energy (the energy in Lipo battery is not infinite and the resulted price is

also an important parameter during the choice).

Another very important parameter is the placement of the sensor. To

measure the outside temperature during the mission 1 of the CanSat, the

sensor has to be placed on the external wall.

Lab 3: SPI Interface and Radio Communication

This lab builds on the sensing and message sending capabilities we have developed in the

previous labs by adding wireless capabilities to the CanSat, using the SPI interface. This will

fulfil the electrical requirements for the primary mission.

This lab will require two parts to operate, one to send data and one to receive data. Exercise

4.3 builds the CanSat (data transmission) software and Exercise 4.4 builds the Ground

Station (data receive) software. We will have a beacon set up at the front of the room that

will receive all packets. Alternatively, you can pair with someone else; one taking the CanSat

role and the other the Ground Station role.

Serial Peripheral Interface (SPI)

SPI offers an interface with more powerful capabilities than I2C at the cost of more wiring

required. As with I2C it also supports bi-directional communication with several devices but

offers a much higher data throughput. This makes it suitable for communicating with the

most complex devices that you might connect to the CanSat. The interface consists of at

least four pins:

SCLK: Serial Clock. A stream of 0-1s that the data is aligned to. The SPI clock rate is

related to the speed of this stream, you can slow this down if having data integrity issues.

MISO: Master Input / Slave Output. The data from the peripheral device to the Pi.

MOSI: Master Output / Slave Input. The data from the Pi to the peripheral device.

SS0/CE0: Slave Select / Chip Enable. Enables a peripheral device and means that the

device can output to the MISO pin. One SS/CE pin is needed for each peripheral device.

To use SPI you don't need to be too concerned about the function of these pins as the

device's software library will take care of most of the low-level SPI code for you. However it

is good to be aware of their function when cascading multiple SPI devices together, for

example to connect two devices you will need two SS/CE pins:

Typical SPI CanSat Uses:

Cameras, Storage cards (e.g. SD cards), GPS modules, WiFi Modems

Exercise 3.1: Connecting to the RFM69 LORA Radio Module using SPI

The RFM69 LORA module is a long range (upto 2km line-of-sight), low throughput, radio

module and connects to the RaspberryPi via an SPI connection. The SPI signals are present

on the RFM96x as SCK (SCLK), MISO and MOSI.

https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-breakouts/pinouts

The Raspberry Pi Pico has two SPI interfaces and, as with the UART and I2C interfaces, it

can be setup to use a variety of pins for the interface. For this lab we will use the GP2 to

GP7 pins for the radio.

https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-breakouts/pinouts

The wiring between the Pi Pico and the RFM90 module is the same for the the base station

or the CanSat station.

For the base station it is easier to connect the chips on the breadboard.

For the CanSat station it its recommended to first connect the

1. Connect the power signals on the RFM69. You will need two cables to connect the

VIN and GND pins on the RFM69 to the 3V3 and GND pins on the Pi. This module

can cope with both 3.3V and 5V signals, but as the Raspberry Pi's logic pins are 3.3V

we use that voltage for the RFM69. Pin 36 provides VCC (or it can be chained from

the BMP280’s Vin pin) and there are several GND pins to use.

2. Connect the three SPI signals (SCK, MISO, MOSI) from the RFM69 module to the

Raspberry Pi. GP2 will be used for SCK, GP3 for MOSI (Master-Out, Slave-In, SPI0-

TX on the Pi) and GP4 for MISO (Master-In, Slave-Out, SPI0-RX on the Pi).

3. The RFM69 needs the SPI chip select pin. Connect the CS pin to a GPIO pin so that

we can set this to zero to reset the RFM69, pin GP6 is used in this example.

4. The RFM69 needs to be reset on start up. Connect the RST pin to a GPIO pin so that

we can set this to zero to reset the RFM69, pin GP7 is used in this example.

At this point you should have 7 wires (2 power, 3 SPI, CS, reset) connected (and the

BMP280 wires if you have left those connected).

Exercise 3.2: Setting up the RFM69 Radio

Now that the hardware is connected, we configure the software side of the radio module.

1. Create a new file and save it as radio.py

2. First we need to add the required libraries. As with the I2C sensor, we need to add the

board and bus io libraries to access the SPI interface. We also need the digitalio

library for the CS and reset pins and finally we also need the RFM69 radio library.

3. We declare constants for the frequency of the radio signal, the encryption key and the

node ID which is the identification of the station

Encryption key has to be unique for each couple base station / can station. The node ID

have to be unique for each station. These changes are necessary in order to

 avoid interference with the other projects.

4. Now we setup the SPI interface so that we can communicate to the RFM69. We map

the SPI signals to the pin numbers based on how they are connected.

5. We need to also set up the CS or NSS and reset pins as GPIO digital pins:

6. We use the build-in led to give indication of the received or transmitted nformation

7. We can now start up the radio. To do this we can call the RFM69 library functions, this

will give us an object that we can then use to represent the radio:

As you can see, the RFM69() function takes several parameters:

• The SPI interface to use

• The CS (cheap select) or NSS (slave select) and reset pins to use

• Operating frequency: Several different RFM69 are available that operate at

different frequencies, 433MHz is recommend to use in the UK, Belgium and

Luxemburg as it is part of a free ISM radio frequency allocation. Therefore the

operating frequency is set to 433.0MHz

• The RFM69 object that this function returns is what we shall use for accessing

the radio for other parts of the lab.

These lines of the code radio.py are common for the cansat.py program (which read and

transmit the measured values) as for the basestation.py (which receives the transmitted

values from the CanSat). There are some differences like the NODE_ID (to change with

constant value) and the radiolink quality that we will read in the basestation.py.

Exercise 3.3: Radio Data Transmission (CanSat)

We have coded programs to read parameters like the temp, pressure from the bmp280 or

the TMP36, we have written the code for the transmission/reception. Now we have to

assemble the various codes in one code cansat.py.

 Here is the link for the code for the Cansat

https://github.com/mchobby/cansat-belgium-micropython/blob/main/mission1/cansat.py

Proceed as described before for the bmp280.py and rfm69.py

Look at this code you will see that the constants NODE_ID and BASESTATION_ID have

been defined and declared. In this the way CanSat communicate to a particular

BaseStation. So please make a change for each ID in order to avoid communication with

other projects.

There is also another way to avoid the distribution of information to other BaseStation ...

https://github.com/mchobby/cansat-belgium-micropython/blob/main/mission1/cansat.py

Exercise 3.4: Radio Data Receive (BaseStation)

As with the transmit, the radio setup of Exercise 3.2 is enough to allow us to start receiving

data. Each message sent over the radio is dubbed a packet and the receiver can receive

one packet at a time.

Here you will find the code to implement in the BaseStation.

https://github.com/mchobby/cansat-belgium-micropython/blob/main/mission1/basestation.py

Proceed as before. And look attentively to the code.

As for the cansat.py program you will observe that there are a lot of comments (each

comment begins with a #). This is very important to comment your code in order to let other

developers to your code and also to understand later on to understand your own code.

The code uses another function of the object rfm69, that it is not used in the cansat.py

program : rfm.last_rssi This function gives the radio link quality measurement.

This parameter will indicate if the antennas are well designed. Use this parameter during the

construction of your antenna on the ground before the launch of your satellite !!

Run the code and check that you receive packets from either the beacon at the front of the

room or from your neighbour undertaking the transmission exercise.

Recording the data from the space !

The program your developed has read the captors to observe the temperature the

atmospheric pressure. But if we want to analyse the data we need to store them in a file with

the values and a time stamp so that we can afterwards make graphics with a tool like excel.

For that we have to create the file (with a file name and the location of this file) and we have

to close it when the flight is finished. The data can be stored on the imbedded board

(satellite station) or on the base station or both !. It’s recommended to store on both sides

If we choose to record the data on the base station during the flight, we should open a file.

Let’s choose a name that we will remember after a while. For instance CanSatRec.txt. This

indicates the data will be text.

Therefore, in the receive.py program we add a line at the beginning of the program (after the

import lines and the base settings

CSR=open (“CanSatRec.txt”,”a”). “a” stands for append so that each received value will not

erase the previous one.

And each time the base station receive a new data we will store it in the file, choosing the

string type before to record

https://github.com/mchobby/cansat-belgium-micropython/blob/main/mission1/basestation.py

 CSR.fwrite(packet packet_txt)

And at the end we close the file. CSR.close()

